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A hydroelastic model describing the mechanics of the human semicircular canal is 
presented that extends previous work to address the influence of the shape of the 
labyrinth and the interaction between the endolymph and the cupula. The analysis 
is based extensively on the three-dimensional geometry and structure of the system 
and exploits the slender toroidal geometry to obtain an asymptotic solution 
describing the velocity distribution of the endolymph, the pressure distribution and 
the deflection of the cupula. All parameters appearing in the model are explicitly 
defined in terms of physical properties and the geometry. Results for the structure 
of an infant human endolymphatic canal agree well with experimental measurements 
of the end-organ velocity gain and phase over the entire physiological range of 
angular head frequencies. From 0.09 to 1.5 Hz the mechanical response relative to 
head velocity is essentially constant and the end-organ acts as an angular velocity 
transducer. Below 0.09 Hz the velocity gain is diminished and above 1.5 Hz the 
velocity gain is enhanced. For a 1 rad sinusoidal rotation of the head, the analysis 
predicts an average cupula displacement for the infant canal of approximately 
8 x cm at 0.09 Hz and 2 x cm at 2.0 Hz. 

1. Introduction 
It is often suggested that our sixth sense may be attributed to human intuition, 

which, strictly speaking, falls into the realm of extrasensory perception. It is not 
necessary, however, for one to look beyond our own physical being to see that indeed 
we do possess a sixth sensory capability which is as ‘earthly ’ as the five better known 
special senses. As vital as it is to the homeostasis of dynamical equilibrium, the 
vestibular system is frequently taken for granted owing to the inconspicuous nature 
of its function. Nonetheless, the functional importance of the vestibular system 
suggests that it should be classified as one among the primary special senses with 
which we are commonly familiar. 

Fundamental to the ability to control the eyes and to maintain equilibrium, the 
human semicircular canals provide the body with the ability to sense angular motion 
of the head. This sensory system consists of a fluid-coupled structure that induces a 
motion-sensitive signal on the vestibular nerve. Experimental measurements of the 
afferent neural response show that the system acts as an angular velocity transducer 
over a broad range of physiological rotational frequencies (Fernandez 5, Goldberg, 
1971 ; Wilson & Jones 1979). In  the middle frequency range the neural signal is 
proportional to, and in phase with, the angular velocity of the head. At  low 
frequencies the signal on the vestibular nerve shows a diminished firing rate and a 
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phase lead relative to head velocity. In contrast, an enhanced firing rate is observed 
at high frequencies in combination with a phase lead. This neural response is 
governed by the mechanics of the vestibular end organ and by the mechano-electrical 
transduction of the sensory hair cells. The geometry and structure of the semicircular 
canals play an important role in the process. 

In this work we analyze the mechanical response by investigating the dynamic 
interaction of the endolymphatic fluid in the semicircular canal with the innervated 
cupula partition. Results for the geometry of an infant human indicate that the 
deflection of the cupula closely follows the firing rate measured on the vestibular 
nerve over the entire physiological frequency range. This includes the enhancement 
of the velocity gain and the phase lead existing on the vestibular nerve a t  high 
physiological frequencies not predicted by previous mechanical models. 

2. Anatomy and physiology of the end organ 
Located within the temporal region of the skull is a bony labyrinthine system 

which consists of three semicircular canals lying in planes which are approximately 
mutually orthogonal. Housed within this labyrinth and suspended in perilymphatic 
fluid is a membranous duct which itself contains a fluid known as endolymph. The 
composition of the fluids plays an important role in the transduction process by the 
sensory hair cells (Corey & Hudspeth 1979; Ohmori 1985; Bell & Holmes 1986). 

The endolymphatic duct consists of two specialized types of sensory systems, the 
semicircular canals and the otolith organs. The former is sensitive primarily to  
angular motion of the head while the latter responds primarily to linear motion. The 
three semicircular ducts converge upon the utricle which provides fluid continuity 
among the three canals. The utricle contains the utricular macula which comprises 
part of the sensory apparatus of the otolith organs. The rest of the apparatus 
comprising the otolith organs is the saccular macula which resides within the saccule 
located just below the utricle. The saccule is in fluid continuity with the utricle and, 
therefore, also with the semicircular ducts (Wilson & Jones 1979). 

The apparatus responsible for the transduction of angular head motion resides in 
a specific region of the semi-circular duct known as the ampulla. Each of the ducts 
is enlarged in one location to form the ampulla where it takes on an almost spherical 
shape just before entering the utricle. A sagittal section of the ampulla resembles the 
shape of the human kidney. Carrying this analogy one step further, the region in the 
ampulla which corresponds to the pelvis of the kidney is a structure called the crista. 
The crista extends into the lumen of the ampulla where it is encapsulated in a jelly- 
like structure known as the cupula (Lowenstein 1974). The cupula is a membranous 
structure which spans the entire cross-section of the ampulla. 

In the past, there has been some controversy surrounding the manner in which the 
cupula is secured to the ampullary wall. Until recently, it was believed that the 
cupula moves like a swing door as if it were hinged at  the crista. However, recent 
experiments conducted on the cupula of the frog suggest that the cupula is attached 
to the ampullary wall along its entire perimeter in such a way as to stop the 
endolymph from flowing past it (McLaren & Hillman 1976; McLaren 1977). By 
marking the cupula with droplets of oil using a micropipette, McLaren & Hillman 
were able to observe the relative displacement of the cupula with respect to the 
ampullary wall. Photographic results of their investigations showed that circulation 
of the endolymph resulted in a deflection of the cupula which appeared to behave like 
that of an elastic partition attached to the ampullary wall along its entire perimeter. 
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The crista, which is encapsulated by the cupula, contains on its surface a sensory 
epithelium which consists of innervated ciliated hair cells and supporting cells 
(Lowenstein 1974). It is here that the mechanical deflection of the cupula is 
transmitted through the deflection of hair cells to give rise to signals on the 
vestibular nerve. The biophysics of transduction by the sensory hair cells is discussed 
by Ohmori (1985), Corey & Hudspeth (1979), Bell & Holmes (1986), Hudspeth (1983) 
and others. 

3. Brief historical overview 
The biophysics of transduction by the vestibular end organ has been a subject of 

considerable interest since its discovery as the source of motion sensation in the late 
nineteenth century (Ewald 1892). The first mathematical description of angular 
motion sensation came with the introduction of the classical torsion-pendulum model 
by Steinhausen ( 1933). This model consists of a single-degree-of-freedom overdamped 
spring-mass-damper system subject to mass-proportional inertial forcing. The 
simplicity of the torsion-pendulum analogy provides insight into the behaviour of 
the semicircular canals and it remains a popular tool that is utilized to interpret the 
behaviour of the end organ. Several notable extensions have been made to enhance 
the original torsion-pendulum model by relating the geometry and structure of the 
semicircular canal system to mass, stiffness, damping and forcing parameters 
appearing in the model. Groen (1949, 1957) modelled the semicircular canal as a 
perfect toroid acted upon by a velocity-proportional moment induced by the 
viscosity of the endolymph, along with a displacement-proportional movement 
induced by the stiffness of the cupula. Groen’s treatment relates the gross size and 
physical properties of the end organ to coefficients appearing in the classical torsion- 
pendulum model. A more rigorous approach presented by Oman, Marcus & Curthoys 
(1987) incorporates the morphology of the endolymphatic duct and represents the 
most biophysically compatible single-degree-of-freedom model of the semicircular 
canal. Consistent with the original torsion-pendulum, their analysis results in a 
second-order, lumped-parameter, mathematical model. Coefficients appearing in the 
model are related to the geometry and physical properties of the semicircular canal 
system. 

All of the single-degree-of-freedom models (torsion-pendulum models) amount to 
a constant-coefficient, over-damped, spring-mass-damper system. These models 
admit two characteristic time constants. The slow time constant is dominant at low 
rates of acceleration and is defined by a balance between the viscous and stiffness 
terms. The fast time constant is dominant at high rates of acceleration and is defined 
by a balance between the mass and viscous terms. These two time constants 
characterize the behaviour of the model (Van Buskirk & Grant 1973 ; Van Buskirk, 
Watts & Liu 1976). In the middle frequency range, the velocity and phase of the 
model system (representing the velocity of the cupula relative to the head) align with 
the velocity and phase of the excitation (representing movement of the head). At low 
frequencies, the system is dominated by the stiffness, and the slow time constant 
causes a diminishment of the velocity gain and an increase in phase. At high 
frequencies, the system is dominated by the mass. Thus, the fast time constant 
causes a, diminishment of the velocity gain and a decrease in phase. This dynamical 
behaviour is not restricted to the single-degree-of-freedom models. A detailed 
analysis of the fluid mechanics in a uniform toroidal duct subject to a stiffness- 
induced pressure gradient was presented by Van Buskirk & Grant (1973) and Van 
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Buskirk et al. (1976). Their results also predict a decrease in gain at  both low and high 
frequencies accompanied by an increase in phase at low frequencies and a decrease 
in phase at high frequencies. Another detailed model of the fluid mechanics in a 
toroidal duct having a uniform circular cross-section was developed by Damiano 
(1989), in which the cupula was modelled as a linear elastic plate. A closed-form 
asymptotic solution was obtained describing the deflection of the cupula partition. 
The authors have since verified that this model exhibits the same gain and phase 
behaviour as all previous models. 

The mechanical response of the system is related to the firing rate on the vestibular 
nerve through the mechano-electrical transduction of the vestibular hair cells 
(Ohmori 1985; Corey & Hudspeth 1977). Experimental measurements of the 
response on the vestibular nerve follow the mechanical response predicted by the two 
time-constant models at  low frequencies but actually show the opposite behaviour at 
high frequencies (Fernandez & Goldberg 1971). The difference between the behaviour 
measured on the vestibular nerve and the mechanical response predicted by the 
models arises from two sources. First, adaptation and dynamic response of the hair 
cells is known to the frequency dependent (Ohmori 1985; Hudspeth 1983) and, 
second, the mechanical models contain simplifying assumptions and idealizations. A 
popular modelling approach has been to assume that the mechanical model is valid 
and to construct a transfer function to account for the difference between the signal 
on the vestibular nerve and the mechanical model response. This transfer function is 
described as being related to hair cell adaptation (Young & Oman 1969; Fernandez 
& Goldberg 1971 ; Wilson & Jones 1979). Based on isolated hair cell measurements, 
however, it is not clear that the dynamics of hair cell transduction is responsible for 
the wide difference between the mechanical model prediction and the vestibular 
nerve response (Ohmori 1985). This difference leads us to question if the models 
address the salient physical mechanism(s) responsible for the mechanical behaviour 
of the semicircular canal at high frequencies and motivates a more detailed analysis 
of the mechanics. 

4. Model of the semicircular canal 
The analysis presented herein utilizes the slender toroidal geometry to obtain a 

comprehensive model of the endolymphatic semicircular canal. Going beyond 
previous work, the three-dimensional analysis includes the frequency dependence of 
the endolymph velocity distribution and the fluid structure interaction at  the cupula. 
The endolymphatic canal is modelled as a rigid duct containing a Newtonian fluid 
and the cupula partition is modelled as a generalized elastic plate. We assume that 
the partition is afixed to the wall of the duct along its entire perimeter in such a way 
as to preclude the fluid from flowing past it. The coupled system is reduced using 
perturbation methods to obtain a linear model that is easily solved using a 
Rayleigh-Ritz procedure. The geometry of the duct, and the physical properties of 
the endolymph and the partition, serve as inputs to the model. 

4.1. The endolymph j u i d  model 
We assume that the endolymph is an incompressible Newtonian fluid and is governed 
by the Navier-Stokes and continuity equations given by 

au* 1 -+ (v**V*)  u* = --V*P* +VV*%*, 
at* P 
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and w*.v* = 0, (2) 
where the asterisk indicates that the variables are dimensional, otherwise they are 
non-dimensional. In the above equations, the variable v* denotes the dimensional, 
vectorial velocity of the fluid referred to an inertial frame, the variable P* represents 
the dimensional, fluid pressure, and the parameters p and v denote the fluid density 
and kinematic viscosity, respectively. 

As illustrated in figure 1, the semicircular canal is naturally described by locally 
orthogonal toroidal coordinates. For a circular duct having a constant radius of 
curvature and a non-uniform elliptical cross-section, the toroid is most simply 
described by defining two polar cross-sectional coordinates, (p ,  rp) and one streamwise 
coordinate, s*. The coordinate transformations from Cartesian to toroidal coord- 
inates (for a toroid of constant radius of curvature, 1/R) are given by the following 
relationships : 

x* = (p* cosp+R) cos (s*/R), 

y* = (p* cosp+R) sin (s*/R), 
(3) 
(4) 

z* = p*sinq. ( 5 )  
In order to take advantage of the geometry, (1) and (2) must be recast expressly in 
terms of the coordinate system defined by (3), (4) and (5). The derivation of this 
transformation is given in Appendix A for all three coordinate directions p*, Q, and 
s*. For brevity, we will show the results of this transformation for only one 
coordinate direction. The NavierStokes equation in the s* direction, for the locally 
orthogonal toroidal coordinates, is given by 

V 
(R'p*z ++ a Z V *  mp*2 (cos p 2- av* s i n v s )  

as* as* 

and the scalar continuity equation in toroidal coordinates is given by 

The independent variables are non-dimensionalized by defining the dimensionless 
variables 

where a, is the characteristic cross-sectional radius of the duct, 1 is the length of the 
loop of the duct and w is the characteristic forcing frequency of oscillation of the 
duct. The length of the loop, I, is defined as 

p = p*/a,; s = $ * / I ;  t = wt* ,  (8) 

1 = c d s ' ,  (9) 

where s' is the curvilinear path described by the central streamline of the vestibular 
canal. This differs from the coordinate line s* since 8* is a circular path chosen so as 
to assure local orthogonality with the other coordinates, p* and rp. The characteristic 
radius of the loop, R, used in the transformation equations given by (3), (4) and (5 )  
is determined from the length of the loop, 1, by R = 1127~. 
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Inertial frame 

b 
X* 

FIQURE 1. Schematic showing the geometry and notation used in the hydroelastic model of the 
endolymphatic semicircular canal. A photomicrograph, recorded by Curthoys & Oman (1987) 
perpendicularly to the human horizontal semicircular duct, was digitized and traced to determine 
the geometry (solid lines). The dashed circle defines the centreline of the toroidal coordinate system 
used in the analysis and the dotted line shows the centreline of the duct. The cupula partition is 
located at s* = 0. 

Similarly, the dependent variables may be expressed in non-dimensional form by 
defining 

where U is the characteristic velocity of the duct, and p is the characteristic pressure 
in the duct. The slenderness ratio, defined by the ratio of a, over 1, can be exploited 
to form the asymptotic expansion parameter, E. The characteristic pressure is 
dependent upon the characteristic velocity and slenderness ratio. It is determined by 
balancing the distinguished terms in the governing non-dimensional fluid equations 
(Kevorkian & Cole 1981). Expanding the resulting non-dimensional equations in E 

and collecting terms provide the following results : 
momentum equation in the p-direction 

v, = vyu; up = vyu; v, = v:/u; P = P*/P,  (10) 

c o s c p ~  27c€+0(€2) = 0; (11) 
a P  I v a v )  v ~ s ; ~  +-A- sinp,av + 2 -vv:cosq,+"-f - K: ( 2~ as P +  

momentum equation in the pdirection 
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momentum equation in the s-direction 

sin p, av, + {? ( -vp v8 sin p, + vp v8 cosp, +LA +-- E?) p ap, 

-cosp,d+-- av ap 2 . r ~ p u V a s  aP)2n€+o(€2) = 0; 

continuity equation 

(14) 
1 + :-+ 2) + ('up cosp, - vp sinp, + -3 27ce + - 0(e2) = 0. 

2~ as a, 

The distinguished case is associated with the characteristic pressure 

P = bVF/€. (15) 

This results in a first-order model, as e approaches zero, that balances the inertia, 
pressure and viscous terms. The characteristic pressure, p ,  is related to the 
stagnation pressure of the entire loop of fluid on the partition. 

4.2. Endolymphatic duct boundary conditions 
Figure 1 shows the duct referred to an inertial frame defined by the rectangular 
coordinates (x*, y*, z*) .  The vector P* denotes the position of the centroid of the duct 
with respect to the reference frame and the vector R* denotes the position from the 
centroid to the central streamline of the duct. The vector A* locates any point on the 
surface of a cross-section with respect to the tip of vector R*. And finally, vector r* 
denotes the position of any point on the surface of a cross-section with respect to the 
reference frame (x*, y*, a* ) .  

The location of a point on the surface of the duct is defined by 

r* = P*+R*+A*. (16) 

The velocity of the rigid duct wall is therefore given by 

U' = P * + ~ * x ( R * + A * ) ,  (17) 

where h* is a function of time which represents the vectorial, angular velocity of the 
duct. Non-dimesionalizing the velocity of the duct wall with the characteristic 
velocity, U,  gives 

p* h* 
ow=-- " - - + - x  (R*+A*).  (18) u u u  

For angular motion of the head, the characteristic velocity is related to the 
amplitude of rotation, Q,, by U = RwO,. Substituting this for the characteristic 
velocity in (18) provide8 

where P is the dimensionless centroidal velocity vector defined as the ratio P*/U.  
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Furthermore, this expression for the velocity of the rigid duct wall may be expanded 
in terms of the slenderness ratio, 6, by defining the dimensionless vectors 

Thus, the velocity of the rigid duct wall is given in general form by the expression 

V,  = P + B x  ( R + 2 m A ) .  ( 2 1 )  

4.3. The cupula partition 
The cupula is modelled as a flexible partition that responds to transverse pressure 
according to the general expression 

M*[w*] = AP*n,, (22) 

where np is the outward normal to the surface of the partition, M* is a matrix of 
differential operators and w* is the vector displacement field of the partition. This 
form is consistent with shells sculptured of biological tissue and has been used to 
model the tympanic membrane (Stinson 1982). As a first attempt to include the 
fluid-structure interaction at the cupula, the above expression is reduced to the 
simplest possible form of an elastic plate with a bending stiffness D ,  plate thickness 
h, and plate density pp. The transverse displacement, w:, of the partition in the 
streamwise direction is a function of time and the cross-sectional coordinates 
ascribed to the plate. The equation of motion which describes the displacement is 
given by Kirchhoff s two-dimensional plate theory as 

where VZ2 is the dimensional Laplacian over the cross-section. The independent 
variables, p*  and t*, are non-dimensionalized according to (8) and the dependent 
variables according to 

where P is given by (15). Non-dimensionalizing (23) according to these definitions 
provides 

w, = ww:/u; P = P*/P ,  (24) 

where the dimensionless bending stiffness, $, and mass, 5, are given by 

4.4. Boundary conditions around the periphery of the cupula 
Based on our discussion in $ 2  regarding the work of McLaren (1977) and McLaren & 
Hillman (1976), we assume that the partition is clamped to the ampullary wall along 
its entire perimeter. This condition requires that the partition must support the 
bending moment at  its perimeter of attachment and thus the gradient of its 
displacement in the direction normal to the duct wall evaluated at  the surface of the 
duct must be zero. In addition, the displacement of the partition along its perimeter 
of attachment must be zero relative to the duct wall; or equivalently, the velocity 
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of the partition along its perimeter of attachment must be given by the velocity of 
the duct wall. Mathematically, the boundary conditions around the periphery of the 
cupula require that 

(27) 
where n, is the unit vector normal to the duct wall, and 

(V, w,.n,) lu = 0, 

5. Asymptotic solution for pure rotation 
The analysis up to this point is valid for any motion of the duct. The special case 

of pure rotation about the centroidal axis which is perpendicular to the plane of the 
duct is particularly relevant to the dynamics of the semicircular canals and is treated 
in detail here. 

5.1. Asymptotic expansion 
For this case, we assume a solution of the form of an asymptotic series expansion in 
terms of the slenderness ratio, s, where the dependent variables of fluid velocity, 
partition displacement and pressure appearing in (l l) ,  (12), (13), (14) and (25) are 
expressed as 

(29) 

(30) 

(31) 

(32) 

(33) 
Near the ampulla, where the cross-sectional size changes rapidly, transverse velocity 
components increase in magnitude causing an increase in the influence of convective 
nonlinearities contained in the O(E) terms. This effect is not included in the O(1) 
problem - the solution must be carried to O(s) to address the convective nonlinearity. 

Making these substitutions into (1  l ) ,  (12), (13) and (14), and using (15), provide the 
governing fluid equation : 

vp = €VPl + s2vp2 + . . . , 
vp = €Vpl + E2VP2 + . . . , 
v, = Vao + €VS1 + 2 V S 2  + . . . , 
w, = W,O+€Ws~ +E2WS2 + . . ., 
P = Po +€P, + 2 P ,  + . . . . 

1 + vp2coscp-vp2sincp+-- 2m+-O(e2) = 0, (37) { 2~ as a 
s l + - 2 L + A + l a " S o  v i a v  av 
P P % a P  2x as 
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V V 

According to (34) and (35), therefore, the 0(1) momentum equations in the p- a n d p  
directions, are given by 

Therefore, at  any instant in time, the O(1) pressure remains constant over any given 
cross-section. According to (36), the O( 1) momentum equation in the direction 
takes the form 

ap 
at as St--v:v , ,+$ReL = 0. 

5.2. Transformation to homogenize the boundary conditions 
For the case of pure rotation, the centroidal position vector, P, remains constant 
with time and thus P in (21) is zero. The velocity of the rigid duct wall to an O(1) 
approximation for pure rotation reduces to 

v,, = Six R .  

vw0 = r ( s ) d ,  (42) 

(41 1 
For pure rotation, R is always orthogonal to the angular velocity vector b, and we 
may write the cross-product of these two vectors in the streamwise direction as 

where r (s )  = IRI is dependent on the streamwise coordinate s and represents the local, 
non-dimensional radius of the duct. Enforcing the no-slip condition, we require that 
the tangential velocity of the fluid at  a solid interface is given by the tangential 
velocity of the solid. Since the wall of the duct is assumed to be rigid and 
impermeable, the velocity of the fluid immediately adjacent to the duct wall, for pure 
rotation, is given to an O(1) approximation by v,, delineated above. Thus, the 
boundary condition for the equation of motion given by (40) is 

vs01, = rQ. (43) 

u = vs-vsI,, (44) 

This boundary condition may be homogenized by defining a new variable u, where 

and represents the streamwise velocity of the fluid relative to the duct wall. For pure 
rotation, to an 0(1 )  approximation, the relative velocity of the fluid, u,, far from the 
ampulla, is given by 

Substituting this variable into (40) and (43) yields, respectively, the differential 
equation and homogeneous boundary condition for the O(1) problem, under pure 
rotational forcing, given by 

u, = V , ~ - V , ~  1, = v,o-rQ. (45) 

uolw = 0. (47) 
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In addition to the boundary condition on the flgid, we may homogenize the 
boundary condition on the partitidn,The velocity vector of the duct wall, vw, is given 
to an O(1) approximation, for pure rotation, to be of magnitude rd, and in the 
streamwise direction. According to  (42), therefore, th$ clamped boundary condition 
on the partition, to an O( 1) approximation, for pure rotation becomes 

This boundary condition may be homogenized by defining a new variable, w, such 
that 

where w represents the transverse displacement of the'partition relative to the duct 
wall. For pure rotation, to an O(1) approximation, the relative, transverse velocity 
of the partition, aw0/at, is given.by 

where 

Since the clamped boundary condition requires the displacement of the perimeter of 
the partition to match the displacement of the duct wall, we may write from the 
previous result 

Substituting this into the O(1) approximation of (25), (27) and (28) yields, 
respectively, the differential equation and homogeneous boundary conditions for the 
partition under pure rotational forcing given by 

wo I,, = 0. (52) 

5.3, Pressure acting on the cupula - general 
Our goal is to determine the deflection of the partition, which in turn provides a 
model to determine the deflection of the innervated hair cells within the cupula. To 
this end, the pressure acting on the partition must be related to endolymphatic fluid 
pressure. This is achieved by integrating (46) over the cross-sectional area, A(8). 
Rearranging terms, we have 

Applying Green's theorem to the second term on the right-hand side of (56) and 
integrating over the length of the duct gives 

12 FLM 238 
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The first term accounts for pressure induced across the partition due to the inertia 
of the loop of fluid and the second term accounts for viscous interaction between the 
endolymph and the duct wall. From an O(1) integral mass balance, we have 

This implies, therefore, that at  any instant in time, the integral in the above 
expression evaluated at any cross-section in the duct is equivalent to the same 
integral evaluated at  any other cross-section. We also know from continuity, that the 
velocity of the fluid on the surface of the partition must match the partition velocity 
exactly. Thus we have that 

Using this, the pressure drop across the partition is related to the relative 
displacement of the cupula and the motion of the head by 

5.4. Pressure acting on the cupula -with approximate transition layer 
If we consider a transitional layer near the partition, and an outer region comprising 
most of the fluid loop, we can break the second term of (60) into two parts as follows : 

near to the partition 
1-6; 2 

\ +Jp ~ S , , . w * ~ c ~ o f d ~ d s  
- d 9  (61) 

away from the partition 

where S* is selected to represent the length of the transitional layer, uop is the velocity 
of the fluid near to the partition, and uor is the velocity of the fluid in regions of the 
duct which are sufficiently far from the partition so as to be unaffected by how the 
partition is attached to the duct wall. 

= 0. As a direct result, the shear stress on 
the fluid along the surface of the duct wall where the partition attaches is zero. This 
suggests that (61) can be approximated by 

For the clamped partition (V, wo-nw) 

where S is the effective length of the transition region such that 6 < S*. This length is 
in some ways analogous to the effective length of the entrance region in a pipe flow 
(Potter & Foss 1975). With this approximation, it is not necessary to determine the 
details of the velocity distribution within the transition region when finding the O( 1) 
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solution. Substituting this result into (60) provides the pressure gradient across the 
partition as 

5.5. Endolymphatic viscous shear stress 
Our primary goal is to determine the deflection of the cupula partition containing the 
innervated hair cells. The deflection is determined from (53) subject to the pressure 
given by (63). The pressure contains a term accounting for the viscous shear stress 
acting on the walls of the endolymphatic duct that depends on the fluid velocity 
profile, uof. 

In regions of the duct which are sufficiently far from the partition so as to be 
unaffected by how the partition is attached to the duct wall, we assume that the 
velocity profile is axisymmetric about the duct centreline and has a cross-sectional 
distribution of the form 

(64) 
where u,( p/a(s ) )  describes the cross-sectional shape of the velocity profile and 
ul(s,  t )  describes the lengthwise and temporal variations. The radial argument of u, has 
been normalized with the local, dimensionless, cross-sectional radius, a(s) = a*(s)/a,, 
so that it ranges from 0 to 1 for all cross-sections. 

uoc = U l ( S 9  t )  uc(p/a(s)), 

Applying the integral mass balance of (58) to uof gives 

Performing the substitution p = p ( s ) ,  where 7 is the normalized radial coordinate, 
gives 

(66) 
- {U1(S,  a t ) 2 n 4 4 ~ u c ( 7 ) l d 7 }  = 0. 
as 

Since the integral in the above expression is invariant, we have 

(67) 
a 
- ( U l ( S ,  t )A(s ) )  = 0, as 

so ul(s, t )  is inversely proportional to the cross-sectional area, A(s) ,  such that 

Using (59) and (64,  the time dependence of u1 is found to be 

Substituting this into (64) we find 

(70) 

12-2 
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We are now in a position to evaluate the viscous shear stress term in (63). From 
(70) 

(71) u- (S j  

Defining a dynamic shear stress velocity profile factor, A, as the ratio of the non- 
dimensional slope of the velocity at the wall to the non-dimensional average velocity 
gives 

JJ A u o i u  
and for the axisymmetric case 

-7rUh(l) 
(73) 

The factor A accounts for the influence of the shape of the cross-sectional velocity 
profile on the shear stress, or viscous drag, at the wall. For a fully developed, 
Poiseuille flow in a straight, circular pipe, A = 87r. The same value is found for fully 
developed, steady, laminar flow between parallel plates. As shown later in this 
section, for sinusoidal oscillation of the endolymphatic duct, the average value of 
A - 25.1 - 8x at low frequencies and increases slightly a t  the high physiological 
frequencies. 

Substituting this into (63) gives the pressure acting across the cupula partition in 
terms of the average partition velocity and acceleration, system geometry and 
physical parameters. This results in 

5.6. Endolymph velocity distribution 
In the present section we obtain a closed-form description of the endolymph velocity 
distribution. This solution assumes that (64) applies, so the velocity distribution is 
not valid in the transition region near the cupula. An eigenfunction expansion is 
utilized to determine the cross-sectional velocity profile, u,( p/a), and integral 
continuity is applied in combination with the inertial forcing to determine the 
lengthwise and temporal variations of the velocity, ul(s, t ) .  

5.6.1. Homogeneous solution 
For the axisymmetric case, (46) is written as 

We can interpret the right-hand side as a forcing function dependent on s and t .  If 
we consider only the homogeneous part we have 
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Separating variables as in (64), where the velocity distribution outside of the 
transition region is 

and taking ‘I = p/a(s), we have 

U0* = Ul(S’ t 1 %(‘I), (77) 

We now see that the differential equation governing u, is Bessel’s equation given by 

-- ‘I- +$uc = 0. 
::’I( :) (79) 

The boundary condition given by (47) may be rewritten in terms of u, as 

U,l+ = 0. (80) 
The solution to the homogeneous equation takes the form 

U c n ( E )  = J0(%)’ 

where /3, are the eigenvalues such that J0(/3,) = 0. Writing uof as an eigenfunction 
expansion in terms of u,, provides 

5.6.2. Inhomogeneous soZution for sinwoidal motion 
Substituting (82) into (75) we have 

n-1 2 {B”. JOny,+St 

where Jon = Jo(Bnp/a) and we have assumed sinusoidal motion such that 

If we multiply (83) by the orthogonal function Jo,, integrate the expression over the 
cross-section and simplify using the orthogonality of the Bessel functions we obtain 

-+a,uln = gneit, 
at 

and 

where the inner product is defined by 
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The general solution of (85) is 
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After transients from the initial conditions die out 

The cross-sectional shape of the velocity distribution is given by the sum of the 
Bessel functions and the variation in amplitude along the length is given by the 
function g(s). Substitution into (58) determines g(s). The velocity distribution at two 
frequencies is shown in figure 3 below. 

For this distribution, the shear stress velocity profile factor h appearing in (74) and 
defined by (73) is 

( ‘ 3  J o n )  pn 
m 

-‘ ’ J ’ ( p n ) ( J o n ,  Jon) (p”,+iSt) 
9 (91) 

n-1 A =  
W (1, Jon> z 

n=l (p”, + a t )  ( J o n ,  Jon> 

and is shown as a function of frequency in figure 4 below. With this result, the 
combination of (53) and (74), together with the boundary conditions, provide a 
closed model to determine the dynamic deflection of the cupula partition. 

5.7. Model governing dejection of the partition 
The resulting model is obtained by substituting (74) for the pressure difference across 
the partition into the momentum equation of the partition, given by (53). 
Rearranging and collecting terms gives 

subject to the clamped boundary conditions given by (54) and (55). This equation 
accounts for : (i) inertia of the fluid in the variable cross-sectional duct, (ii) frequency- 
dependent viscous shear stress on the wall of the variable cross-sectional duct, (iii) 
frequency-dependent fluid velocity profile for sinusoidal oscillation, (iv) inertia of the 
partition structure, (v) variable stiffness of the partition, and (vi) the distorted 
toroidal geometry of the system. 

Consistent with Oman et al. (1987), the effective inertia of the fluid at the partition 
is proportional to the integral of 1/A while the effective viscous drag is proportional 
to the integral of 1/A2. The velocity distribution obtained outside the transition 
region is also consistent with the work of Van Buskirk et al. (1976) and Van Buskirk 
(1977, 1987). The incorporation of an effective transition length, 8, enabled us to 
determine the pressure acting across the cupula without detailing the velocity 
distribution in the transition region near the cupula. In fact, since the coefficient to 
the viscous term varies like the integral of 1/A2, the results are extremely insensitive 
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to the length of the transition region due to the large cross-sectional ares on both 
sides of the cupula. Going beyond previous work, this model includes the spatial 
distribution of the cupula deflection and resulting fluid-structure interaction. 

6. Rayleigh-Ritz solution 

method. The partition deflection is written in the form 
The deflection of the partition is determined by solving (92) using a Rayleigh-Ritz 

where qn (p, rp) are comparison functions meeting the essential boundary conditions 
of the partition (Reddy 1984). Substituting this into (92), multiplying by qm (p,rp) and 
integrating over the cross-section gives 

where qm = (1,  q m ) .  

Truncating the sum, (94) can be rewritten in the following matrix form: 

d 2 F  d F  
dt2 dt 

M-+C-+KF= P ,  

where and P are vectors containing the elements T, and P,,, respectively, and M, 
C and K are the mass, damping and stiffness matrices, respectively. The elements of 
the matrix coefficients and the forcing vector are 

Using Green's theorem and the boundary conditions, the inner products can be 
simplified and shown to be self-adjoint. For the case of sinusoidal motion, 

d = eit . (101) 

Qt)  = Aleit. (102) 

A" = (-M+iC+K)-lP, (103) 

After transients, the response of the partition can be written as 

Substituting this into (96) and solving for A" gives 
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a, 

1 1 0 1  3.18 0.556 x lo-' 
2 1  1 1  4.59 0.152 x lo-' 
3 1  1 2 4.59 0 . 1 5 2 ~  lo-' 
4 1 2 1  5.88 0.523 x lo-' 
5 1 2 2  5.88 0.523 x lo-* 

7 1 3 1  7.12 0.201 x lo-' 
8 1 3 2  7.12 0.201 x lo-' 
9 2 1 1  7.78 -0.607 x lo-' 

1 0 2 1 2  7.78 -0.607 x lo-' 
1 1 1 4 1  8.32 0.827 x 
1 2 1 4 2  8.32 0.827 x lo-' 
1 3 2 2 1  9.17 -0.175 x lo-' 
14 2 2 2 9.17 - 0 . 1 7 5 ~  lo-' 

1 6 1 5 1  9.49 0.356 x 
17 1 5 2 9.49 0.356 X lo-' 
18 2 3 1 10.5 -0 .564~  
19 2 3 2 10.5 -0 .564~  
20 1 6 1 10.7 0 . 1 5 9 ~  lo-' 

TABLE 1. Comparison function indices and eigenvalues 

6 2 0 1  6.28 -0.252 X lo-* 

1 5 3 0 1  9.42 0.1 10 x 10-3 

and 

For a circular partition with a clamped boundary, we select comparison functions 

qn(P,F) = [J,(fl,Pp/a)+oluI~(~,P/a)lcos{ipl+[1+(- 1)"1/4)Y (105) 

where Ji  is an integer-order Bessel function of the first kind, I ,  is a modified integer- 
order Bessel function and fl, are the eigenvalues satisfying the clamped boundary 
condition such that 

The constants a*, are given by 

For the axisymmetric case, i = 0 and k = 1. The indices i ,  j and k are related to the 
index n such that the eigenvalues, &, increase with increasing n (see table 1). The 
comparison functions are shown by Rabbitt & Friedrich (1991). 

7. Discussion of parameters for the infant human semicircular canal 
Physical and geometrical parameters appearing in the model are listed in tables 2 

and 3. The density and the viscosity of endolymph are taken to be similar to that of 
water (Steer 1967; Money et al. 1971). The density of the cupula is assumed to be 
slightly larger than the density of water and is listed in table 2. The influence of the 
mass of the cupula is extremely small in comparison to the mass of the endolymph ; 
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Parameter or property Symbol value 

Characteristic cross-sectional radius 
Cross-sectional radius of cupula 
Length of duct 
Characteristic radius of loop 
Slenderness ratio 
Fluid density 
Partition density 
Partition thickness 
Bending stiffness 
Fluid viscosity 

a, 0.054cm 
a, 0.110cm 
1 2.402 cm 

R 0.382cm 
6 0.0225 
p 1.0g/cm3 
p, 1.2g/cm3 
h 0.05cm 
D 1 x dyncm 
v 0.01002 cm2/s 

TABLE 2. Physical parameters and properties of the vestibular canal, endolymphatic fluid and 
cupula partition 

Coefficient Symbol Value 

Average velocity profile factor A 26 

Mass coefficient l i d s  1.30 x 109 cm-' x a:/l 

Viscosity coefficient l $ d *  3.43 x 10' xa:/l  

Forcing coefficient 0.84 cm2 x 2n/E2 lrds 
TABLE 3. Integral coefficients to the differential terms appearing in (92) 

consequently, the results of the analysis are insensitive to the density of the cupula. 
Geometrical parameters were determined from measurements of an infant human 
horizontal semicircular canal. The outline of the canal projected perpendicularly to 
the duct was determined from measurements of a photomicrograph recorded by 
Curthoys & Oman (1987). Points along the periphery of the endolymphatic duct were 
located on a computer-enhanced video image and recorded. The duct outline 
obtained using this method is shown in figure 1. Opposite the ampulla, the major axis 
of the membranous duct's cross-section is approximately perpendicular to the plane 
of the duct and the ratio of the minor to the major axis is approximately 0.73. Near 
the ampulla and the utricle the major axis lies approximately in the plane of the duct 
and the ratio of the minor axis to the major axis is approximately 0.5. Results are 
based on a three-dimensional geometry constructed by assembling a sequence of 
circular cross-sectional slices that define the same outline as measured from the 
photomicrograph. The circular cross-sections approximate the actual shape. Figure 
2 shows orthographic projections of the three-dimensional geometry used to model 
the infant human endolymphatic duct. In  this geometry, the centres of the circular 
cross-sections are approximated as falling within a single plane. Although the 
analysis is capable of addressing a more exact geometry, given the diversity in the 
shape of individual canals, it is not clear that such an exercise would produce any 
additional information. The geometry of the endolymphatic duct is manifested in the 
model through integral coefficients representing the influence of the fluid mass and 
viscosity on the motion of the cupula. This is divided into three distinct areas - the 
effective mass, the effective viscosity, and the inertia forcing. We discuss each of 
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FIGURE 2. Orthographic projections of the geometry used to model the infant human horizontal 
canal are shown. The geometrical model consists of circular cross-sections constructed from the 
tracing shown in figure 1.  This approximates the actual cross-sectional geometry which is roughly 
elliptical in shape and varies along the s* coordinate. Although the analysis addresses the general 
case, results are computed for an ideal geometry where the centres of the circular cross-sections fall 
within a single plane. 

these results separately beginning with the effective mass of the endolymph acting 
on the cupula. 

As the duct rotates, motion of the endolymph relative to the duct wall displaces 
a volume that equals that displaced by the deflection of the cupula. From a frame 
of reference attached to the head, the endolymph moves with the deflection of the 
cupula. The kinetic energy of the fluid determines the influence of the entrained mass 
on the mass loading of the cupula. In regions where the cross-sectional area is small 
(in the narrow part of the duct), the fluid velocity and associated kinetic energy are 
large relative to regions where the duct cross-sectional area is large (in the utricle). 
As a result, regions of small cross-sectional area contribute more to the effective mass 
than regions of large cross-sectional area. The effective mass of the endolymph acting 
on the cupula appears as the integral of the inverse of the cross-sectional area. This 
integral was computed numerically and its value is given in table 3 in non- 
dimensional form. The inverse area dependence is consistent with the relationship 
obtained by Oman et al. (1987) using an alternative method. The result also supports 
the conclusion that the large cross-sectional area at  the utricle does not contribute 
significantly to the effective mass loading of the cupula caused by the endolymph 
(Van Buskirk 1977). In fact, the column of endolymph in the long-and-slender region 
of the duct dominates the effective mass acting on the cupula. 

In  addition to  mass loading, the endolymph induces viscous drag on the cupula. 
The drag is a direct result of the viscous shear stress acting between the fluid and the 
duct wall and is determined by the cross-sectional velocity profile. The characteristic 
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FIQURE 3. The endolymph fluid velocity profile, shown above in time averaged form a t  (a) 0.01 Hz 
and (b) 10 Hz, depends on the frequency of oscillation of the duct. At low frequencies, below 
0.01 Hz, the distribution of the velocity across the cross-section is very similar to fully developed 
laminar flow in a straight pipe. At high frequencies, between 1 and 10 Hz, the flow becomes 
concentrated near the wall leaving a valley of relatively low-velocity fluid near the centre. Within 
the physiological range of frequencies, the shape of the velocity distribution is almost independent 
of time, and simply changes amplitude during the cycle. At frequencies above this range, the 
velocity profile changes shape significantly during the cycle. The endolymph velocity profile 
determines the magnitude of the viscous shear stress at the duct wall aa quantified in table 3. 

Reynolds number (Re) ranges from 0.089 at 0.01 Hz to  89 a t  10 Hz, and the 
characteristic Stokes (St) number ranges from 0.025 to 25 over the same frequency 
range. Both Re and St are relatively low over the entire range, indicating laminar 
flow with only moderate frequency and phase dependence of the velocity profile. This 
qualitative statement is reflected quantitatively in the results. Below 1 Hz the 
velocity distribution is almost identical to fully developed laminar flow in a pipe of 
slowly varying cross-sectional area. In  the endolymphatic duct, the fluid inside the 
duct lags the fluid contacting the duct surface. Figure 3 shows the distribution of the 
velocity across the circular cross-section of the model duct at two frequencies. For 
illustrative purposes, the magnitude of the lag in the velocity inside the duct has been 
exaggerated. Above 1 Hz the unsteady effect begins to play a role and influences the 
magnitude and phase of the shear stress at the wall. This unsteady effect is similar 
to that studied by Womersley (1955, 1958), and Hamakiotes t Berger (1988, 1990). 
When subject to harmonic motion of the head, the velocity profile in the duct exists 
as two distinct shapes - one in phase with the motion and one out of phase. For the 
range of physiological head motions (below 10 Hz) the out-of-phase component is 
very small in comparison to the in-phase component. The model accounts for the 
frequency dependence of the velocity distribution using a dynamic velocity profile 
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FIGURE 4. The shear stress, velocity profile factor, A ,  is shown relative to the steady laminar flow 
value, AgteBdy = 8 ~ .  This factor is a non-dimensional parameter measuring the magnitude of the 
shear stress relative to the volume flow rate, and is directly dependent on the shape of the velocity 
profile across the cross-section. Below 1 Hz, the endolymph velocity profile across the cross-section 
is very similar to steady laminar flow in a pipe and yields almost identical viscous effects. At higher 
frequencies, the fluid becomes more entrained by the duct wall inducing larger viscous effects. At 
10 Hz, the change in the velocity distribution across the duct cross-section causes a 75 YO increase 
in the viscous effects above the steady laminar flow value. This is manifested as two components 
- one in phase and one out of phase. The in-phase component shown in the figure is the real part 
of A. The out-of-phase component is the imaginary part of A and is approximately zero over the 
physiological frequency range. 

factor, A, plotted in figure 4. The factor determines the magnitude and phase of the 
shear stress at the duct wall for a non-dimensional flow rate. Over the entire 
frequency range, the imaginary part of A ,  corresponding to the magnitude of the out- 
of-phase shear stress, is negligible in comparison to the in-phase component. Below 
1 Hz, the real part of A is almost identical to that obtained from the analysis of 
laminar flow in a straight pipe. As shown in figure 4, the frequency dependence causes 
the effective viscous drag at 10Hz to exceed the viscous drag at  1 Hz by 
approximately 170% for the same average flow rate. The shear stress at the wall is 
influenced also by the flow rate. For a given velocity profile, an increase in the flow 
rate causes a proportional increase in the shear stress a t  the wall. The shape of the 
velocity profile is determined by the duct geometry and the frequency while the flow 
rate is determined by the cross-sectional area. In  the model, these factors combine 
to determine that the effective viscous drag on the cupula is proportional to the 
integral around the endolymphatic loop of the dynamic velocity profile factor 
divided by the square of the cross-sectional area. This integral was computed 
numerically and its value is given in table 3 in non-dimensional form. The croas- 
sectional-area dependence is consistent with Oman et al. (1987) and the frequency 
dependence is consistent with the formulation presented by Van Buskirk (1987). The 
asymptotic result obtained here includes both effects. In  the frequency range 
relevant to physiological motions of the head, the morphology of the duct’s cross- 
sectional area plays a more significant role in the behaviour of the system then the 
frequency dependence in the velocity profile. Similar to the effective mass loading of 
the cupula, the effective viscous drag is not influenced by the large cross-sectional 
area near the utricle. Insensitivity of the viscous drag to the flow in the utricle is a 
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direct result of the inverse-area dependence of the wall shear stress (see table 3). 
Because of this, the long and slender region of the semicircular canal is responsible 
for the viscous loading of the cupula. 

The morphology of the cross-sectional area in the long-and-slender region of the 
endolymphatic duct dominates the mass and the viscous loading of the cupula. 
Combined with the stiffness of the cupula, the effective mass and the effective viscous 
drag react to inertia-induced forcing. The forcing is a result of the acceleration of the 
endolymphatic duct and can be calculated directly for any specific motion of the 
head. The results presented here are for pure harmonic rotation. For this case, the 
inertial forcing depends primarily on the radius from the centre of rotation out to the 
projection of the duct in the plane of the rotation. This result is consistent with Oman 
et al. (1987). It is noteworthy that the effective mass caused by the endolymph is 
proportional to the integral of the inverse area but the inertial forcing does not 
contain this cross-sectional-area dependence. An analogy directed a t  understanding 
the cross-sectional-area independence of the inertial forcing is provided by 
considering a simple hydrostatic pressure generated by the acceleration of gravity 
acting on a fluid in a container. The pressure in the fluid depends only on the depth 
and not on the shape of the container in the same way that the inertial pressure in 
the endolymph depends primarily on the position along the loop and not on the shape 
of the cross-section. This analogy applies to the pressure induced by the acceleration 
of the loop of endolymph if all of the fluid moves with the endolymphatic duct. Since 
the cupula deflects, allowing some endolymph flow relative to the duct wall, the 
inertial pressure is somewhat greater than the pressure acting across the cupula. The 
pressure drop due to the motion of the endolymph relative to the duct wall is 
accounted for by the aforementioned effect mass and viscous terms. 

The model shows that the pressure acting across the cupula results from angular 
acceleration of the head. Deflection of the cupula is coupled with the flow of the 
endolymph relative to the duct wall. The entrained fluid causes mass and viscous 
loading of the cupula. The pressure induced by angular acceleration of the head is 
resisted by the cupula. The model assumes that the cupula traverses the duct and 
precludes fluid from flowing past it. As a result, the stiffness of the cupula is the 
primary mechanism resisting the inertially induced pressure gradient. Consequently, 
the stiffness of the cupula is an input to the model. It is not necessary for the stiffness 
to be uniform across the partition-the model includes a spatially dependent 
stiffness. The structure suggests that the stiffness is not homogeneous or isotropic. 
That is, the stiffness is expected to be substantially higher near the crista due to the 
rigidity of the hair cell cilia, and anisotropy is expected due to the orientation of the 
cilia. Inhomogeneity and anisotropy are included in the model formulation, but for 
simplicity in this initial presentation we have elected to present results only for the 
simplest case - homogeneous, isotropic bending stiffness. Direct experimental 
measurements of the stiffness of the human cupula are not available. Grant & Van 
Buskirk (1976) and Van Buskirk (1987) estimate that the global cupula stiffness, 
determined by the ratio of the volume displacement to the pressure gradient across 
the cupula, is approximately 34 x lo3 dyn/cm5. The results presented here are based 
on a bending stiffness determined from this global stiffness. Since the numerical value 
is based on indirect evidence, it represents the most uncertain numerical value 
utilized in the present study. For a homogeneous bending stiffness, Appendix B 
shows that the estimated global stiffness is equivalent to a bending stiffness D equal 
to 1 x dyn cm. Results presented here are for a range of bending stiffness values 
from D = 1 x dyn cm. Although the bending stiffness of the cupula is to 5 x 



360 R. D. Rabbitt and E .  R. Damiano 

the most uncertain parameter appearing in the model, in the middle frequency range, 
the deflection of the cupula predicted by the model is relatively insensitive to 
uncertainty in the bending stiffness. 

8. Discussion of results for the infant human semicircular canal 
Since the introduction of the torsion-pendulum model by Steinhausen (1933), the 

mechanical response of the semicircular canal has been characterized by two time 
constants 71 and T ~ .  In  the middle physiological frequency range, between l / ~ ~  and 
f / ~ ~ ,  the classical model is dominated by a balance between the viscous drag and the 
inertial forcing and predicts an average cupula deflection proportional to the angular 
velocity of the head (constant velocity gain). At frequencies below i / ~ ~ ,  a loss in gain 
is predicted due to the stiffness of the cupula and at  frequencies above 1 / ~ ~ ,  a loss in 
gain is predicted due to the mass of the endolymph (Wilson & Jones 1979 ; Fernandez 
& Goldberg 1971 ; Groen 1949, 1957; Van Buskirk 8z Grant 1973; Van Buskirk 1977). 
At low frequencies the firing rate measured on the vestibular nerve follows the 
mechanical behaviour of the cupula as predicted by the classical model, but at high 
frequencies the velocity gain and phase as measured on the nerve do not follow the 
response of the lumped-parameter torsion-pendulum model. Above 1 Hz the firing 
rate on the vestibular nerve actually exhibits an increase in gain and an increase in 
phase that is exactly the opposite of the torsion-pendulum mechanical response. 
Within the structure of the classical model, it is impossible to adjust the parameters 
to tune the mechanical behaviour of the torsion-pendulum model to follow the 
measured neural response. The difference between the behaviour measured on the 
vestibular nerve and the torsion-pendulum mechanical response has two possible 
sources - adaptation by the sensory hair cells, or a deficiency in the classical 
model at high frequencies. Experimental measurements addressing the frequency 
dependence of the cupula deflection could potentially resolve this question, but such a 
measurement is not simple and has not been reported to date. It has been argued that 
adaptation by the hair cells may be the main factor accounting for the difference 
(Young & Oman 1969; Fernandez & Goldberg 1971). Results of the analysis 
presented here, however, suggest that the mechanical response of the system is not 
predicted by the classical torsion-pendulum model at high frequencies, but rather, 
the mechanical response exhibits the same characteristic behaviour as the signal 
measured on the vestibular nerve. 

The deflection of the cupula in response to sinusoidal angular motion of the head 
was predicted by solving the model equations over a frequency range from 0.01 Hz 
to 10 Hz. Results provide the velocity distribution of the endolymph in the duct, the 
pressure distribution, and the deflected shape of the cupula. From this, the average 
displacement of the cupula across the cross-section was computed. This average 
displacement is related to the deflection of the cilia and hence is a direct indicator of 
the input to the strain-sensitive hair cells. To illustrate the velocity-sensitive 
characteristic of the system, the average displacement was divided by the angular 
velocity to define the velocity gain. The velocity gain is shown in figure 5(a) for B 

sinusoidal angular oscillation of the head having a 1 rad (52.3O) zero-to-peak 
amplitude. Since the system is linear, doubling the amplitude will double the average 
displacement of the cupula. At low frequencies the mechanical response predicted by 
this model is very similar to the classical torsion-pendulum model and exhibits a 
decrease in gain due to the stiffness of the system. In the middle frequency range the 
gain is proportional to the velocity and the mechanical response acts as a velocity 
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FIQURE 5. The frequency response predicted by the model of the infant human system is shown in 
the form of Bode plots of (a) the gain and (b) phaae of the average cupula displacement relative 
to the zero-to-peak angular input velocity (rad/s). The gain is plotted as the log of the average 
displacement over the angular velocity for several partition stiffness values. The solid curve is for 
a bending stiffness based on the volumetric stiffness used by Van Buskirk (1987). From 0.09 to 
1.5 Hz, the system acts as an angular velocity transducer with a nearly constant gain and phase. 
At frequencies below 0.09Hz, the system is dominated by the partition stiffness causing a 
significant drop in gain and an increase in phase. Fluid inertia and viscosity combine with stiffness 
to cause an increase in gain and phase at  frequencies above 1.5 Hz. The model result compares 
favourably to experimental measurements of gain and phase recorded by Fernandez & Goldberg 
(1971) on the vestibular nerve of the squirrel monkey (right axis). For comparison, the response of 
the classical torsion pendulum model is also shown. In contrast to previous mechanical models, the 
predicted mechanical response follows the high-frequency behaviour measured on the vestibular 
nerve. 

transducer. Acceleration is required for sensation, but the mechanical response in the 
middle frequency range integrates the acceleration to produce a velocity proportional 
deflection of the cupula. 

In contrast to the mechanical response predicted by earlier models, including the 
classical torsion-pendulum model, our results exhibit an increase in gain at high 
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physiological frequencies. The velocity gain predicted by the model is not the result 
of curve fitting - all of the parameters are based extensively on the three-dimensional 
geometry as well as on the physical properties of the endolymph and the cupula. No 
free parameters appear in the model. The difference between the present work and 
earlier results suggests that the torsion-pendulum models may lack the salient 
mechanism responsible for the behaviour in the high-physiological-frequency range. 
In fact, the slow time constant 72 associated with the classical model appears to have 
little relevance to the response in the physiological frequency range. The model 
presented here also shows that the gain is cut off by the mass of the system at high 
frequencies, but this effect occurs well above the 0.01 to 10 Hz range. 

The physical mechanism responsible for the increase in gain involves the flexibility 
of the cupula, its interaction with the endolymph and the variable cross-sectional 
geometry. If the cupula were to displace like a piston, then this increase in gain would 
not exist. The more general approach taken by this model allows the cupula 
flexibility over the cross-section, thus introducing additional degrees of freedom to 
the mechanical response that are not accounted for in the lumped-parameter, 
torsion-pendulum models. These additional degrees of freedom can be viewed as 
introducing additional time constants. This alone, however, is not sufficient to 
explain the increase in gain seen in the high-frequency range since the model of 
Damiano (1989) exhibited a high-frequency cutoff in the gain. Indeed, this model 
includes a flexible partition to simulate the cupula but, owing to the idealized 
geometry, i.e. a toroid having a uniform circular cross-section, it overestimates the 
viscous forces and, to a lesser extent, the inertial forces. Like the torsion-pendulum 
models, however, no adjustment of the parameters can result in an increase in gain. 
That is to say, even after correcting the mass and viscous terms in the light of the 
results obtained when considering a more exact geometry, an increase in gain cannot 
be achieved. This suggests yet another factor to be considered which distinguishes 
these results from all previous models. This factor has to do with the way in which 
the cupula interacts with the endolymph. Specifically, the deflected shape of the 
cupula influences the viscous drag. In (92), the mass and viscous terms are integrated 
over the cross-section, while the other terms are not. This means that for certain 
deflected shapes of the partition, the average velocity and acceleration of the cupula 
could be small while the pointwise displacement is large. Under these circumstances, 
the stiffness term would dominate over the mass and viscous terms which in turn 
would lead to an increase in the gain. This characteristic, unique to this analysis, 
together with the variable cross-sectional geometry and a flexible cupula, account for 
the increase in gain in the high physiological frequencies. 

The gain is shown in figure 5(a)  for the infant human model system along with 
experimental data recorded by Fernandez & Goldberg (1971) on the vestibular nerve 
of the squirrel monkey. A direct comparison cannot be made owing to differences in 
the species, but the trends indicate that the mechanical gain follows the response 
measured on the vestibular nerve over the entire physiological frequency range more 
closely than predicted by the classical model. The flat gain from 0.1 to 1 Hz reflects 
the velocity transduction characteristic of the system. This is also illustrated in 
figure 6 where the average displacement of the cupula is shown as a function of 
frequency. To indicate the sensitivity of the behaviour to the most uncertain 
physical parameter appearing in the model, results are shown for several values of 
cupula bending stiffness. 

In addition to the velocity gain, the model results in a significantly different phase 
than predicted by the classical torsion-pendulum a t  high physiological frequencies. 



The macromechanics in the endolymphtic vestibular canal 363 

0.01 0.1 1 10 
Frequency (Hz) 

FIQURE 6. The displacement of the cupula averaged across the duct is shown as a function of 
frequency for the model infant human canal system. Results are shown for a sinusoidal head 
rotation with a peak-to-peak amplitude of 2 rad. The linearity of the curve reflects the velocity 
transduction characteristic of the mechanics of the canal system. The mathematical model 
describing the mechanics is linear, so changes in the amplitude of head rotation are reflected 
proportionally in the mechanical response of the cupula. 

The phase of the average cupula displacement relative to the velocity of the head is 
shown in figure 5 ( b )  for the infant human model system. Also shown as the phase 
recorded by Fernandez & Goldberg (1971) from the vestibular nerve of the squirrel 
monkey. Again, a direct comparison cannot be made owing to differences in the 
species, but it is interesting to note that both the model result and the experimental 
measurement show a phase lead starting from a maximum of 90" at low frequencies, 
reaching a minimum in the middle frequency range, and increasing again at high 
frequencies. Conforming with the velocity transduction behaviour of the system the 
phase is relatively flat in the middle frequency range and leads the velocity of the 
head by only 10". At high physiological frequencies, an increase in the phase is 
predicted by the model, paralleling the behaviour measured on the vestibular nerve. 
This increase in the phase with increasing frequency is inconsistent with the classical 
torsion-pendulum model where the phase actually decreases monotonically from a 
lead of 90" at very low frequencies to a lag of 90" at high frequencies. The present 
model also shows a 90" lag at very high frequencies, but it appears well above the 
range of natural head motions. 

9. Conclusions 
A new mathematical model describing the mechanics of the vestibular semicircular 

canal system has been presented that includes the three-dimensional structure of the 
duct and the interaction of the endolymph with the cupula. The model is based 
extensively on the geometry of the system and on the physical properties of the 
endolymph and the cupula. An asymptotic analysis is applied to exploit the slender 
toroidal geometry of the duct. This results in a relatively simple model describing the 
distribution of the endolymph fluid velocity, the fluid pressure, and the deflection of 
the cupula. Results indicate that the mechanical response of the cupula, including 
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both the gain and the phase, follows the response measured on the vestibular nerve 
more closely than predicted by previous mechanical models. The difference is 
particularly pronounced at  high physiological frequencies. This implies that 
adaptation by the vestibular hair cells may not be the primary factor responsible for 
the difference between prediction of the torsion-pendulum model and the high- 
frequency gain and phase measured on the vestibular nerve - the present analysis 
indicates that the frequency response measured on the nerve is primarily a reflection 
of the mechanical behaviour of the system. For the infant human geometry 
considered, the mechanical gain, defined by the average cupula displacement divided 
by the velocity of the head, is relatively constant in the middle frequency range from 
0.1 to 1.OHz. In this same range the phase of the cupula displacement leads the 
velocity of the head by approximately 10'. Consistent with measurements on the 
vestibular nerve, a phase lead is predicted in the low-frequency range (0-0.1 Hz) and 
also in the high-frequency range (1-10 Hz). This is combined with a decrease in gain 
at  low frequencies and an increase in gain a t  high frequencies. 

Partial support for this work was contributed by the National Science Foundation, 
BCS-8957206. 

Appendix A. Coordinate transformation 
The Navier-Stokes and continuity equations, given in the form of (1) and (2), may 

be recast expressly in terms of any specific coordinate system once the various 
differential operators appearing on the equations are known in terms of the desired 
coordinates. This is accomplished for the generalized, locally orthogonal, curvilinear 
coordinates E l ,  5, and 6, by first obtaining the scale factors for the system. Given the 
transformation from rectangular coordinates (2, y, z )  to the curvilinear coordinates 
(El, t,, 6,) expressed in the form 

(A 1) = x ( 6 1 ?  E 2 9  63)? 

the scale factors, h,, taken from Morse & Feshbach (1953), can be obtained for the 
nth coordinate direction using 

If the curvilinear coordinate unit vectors are given by q , u 2  and a,, the various 
differential operators appearing in the Navier-Stokes and continuity equations may 
be written in terms of this coordinate system by employing the following relationships 
taken from Moon & Spencer (1961) and Morse and Feshbach (1953) : 
the Laplacian of the vector u 



where 

and 
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the gradient of the scalar P 

the convective non-linearity 

the divergence of the vector u 

For the locally orthogonal, toroidal coordinate system defined by (3), (4) and (5 ) ,  the 
scale factors, defined by (A 4), are found to be 

h,, = 1 

hq = p* 

h,, = 1 +-COST. P* 
R 

Using symbolic manipulation, these results were used in conjunction with (A 5 ) ,  
(A lo), (A 11) and (A 12) to obtain the Laplacian of the dimensional velocity vector, 
o*, the gradient of the dimensional scalar pressure, P*, the convective nonlinearity 
and the divergence of the velocity vector expressly in terms of the coordinates p*, q~ 
and s*. For the system defined by (3), (4) and (5) ,  the terms given by (A 5), (A lo), 
(A 11) and (A 12) were found, in dimensional coordinates, to be: 
the Laplacian of the velocity vector v* 
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+ w,* p* sin p(R + 2p* cos p,) - v,*(R2 + 2 R p *  COST + cos2 p,) 

av: 
2Rp*2 sinp,- 

av* 

% 
-p* sinq(R+ p* cosp,)-+ p*(R2 +3Rp* c0sq+2p*~ 

1 
as* 

av* 

@ 
-$ l ip*  sinq- w,* (R2+2Rp* cosp,+ P * ~ )  -p* sinp,(R + p* cosp,)- 

(A 17) 

as* 

azv: 1 a2v* 1 a Z w *  av* 
i 3 ~ * ~  p Y 2  &p2 + P * ~ ( R +  p* cosv2) as* 

b 2  p*2+ + 2 ~ p  *2  (cos p, 9- sinp, [v2u*]g+ = - +-> 

(A 18) 
the gradient of the scalar pressure P* 

ap* 1 ap* R ap* VP* = - a  ,+--a + ap* p p* i+ Rfp*cosp, as* 

the convective nonlinearity 

the divergence of the velocity vector U* 

Appendix B. Quantifying the bending stiffness of the cupula partition 
It is especially difficult to measure the bending stiffness of the cupula for many 

reasons, not least of which is the intrinsic difference in the value it assumes between 
in-vivo and in-vitro measurements. It is therefore an added complication to attempt 
in-vivo measurements of this property. For these and other reasons, a direct 
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measurement of the bending stiffness of the cupula is not available in the literature. 
For the purposes of this analysis, we attempt to obtain an estimate of the bending 
stiffness based on volumetric stiffness estimates of the actual cupula. Van Buskirk 
(1987), Oman et al. (1985) and Van Buskirk & Grant (1973) utilize a volumetric 
stiffness, K ,  for the cupula defined as 

where AP* is the pressure difference across the cupula and AV* is the resulting 
volumetric displacement. The bending stiffness of the cupula, D ,  utilized in the 
present model is related to the volumetric stiffness, K ,  and can be determined from 
the static deflection of the cupula resulting from an applied pressure. This is to be 
done by solving the dimensionless O( 1) equation of motion of the partition given by 
(53). In  non-dimensional form, the static version of this equation is given by 

v:($V;w,) = APo. (B 2) 

For the purpose of estimating the bending stiffness, we assume that the deformation 
is axisymmetric and solve, through four integrations of (B 2) ,  for the deflection of the 
cupula. This results in 

(k,p2 + k,) In p + k, p2 + k4 , 1 
where the k, are four arbitrary constants of integration. Maintaining continuity as 
p approaches zero, and applying the clamped boundary conditions determines the 
constants of integration and results in 

where 7 = p/a,/ao is the normalized radial coordinate at  the partition. 

volumetric displacement, Ah. Solving for the dimensionless stiffness y2 gives 
Integrating over the cross-section of the duct determines the non-dimensional 

We must relate the non-dimensional stiffness, APo/A&, to the dimensional volumetric 
stiffness, K .  From our non-dimensionalization in $4 we write AP* =PAPo and 
AV* = (a: U/W) A G .  

Returning now to dimensional quantities, and using our definition of the 
dimensionless bending stiffness, $, introduced in $4, give 

Solving for D ,  we find that the bending stiffness is related to the volumetric stiffness, 
K ,  and the cupula radius by 

(B 7)  
x 

D = -Ka6 
192 " 

Based on a volumetric stiffness, K ,  of 3.4 x 104 (g/cm4) s2 (Van Buskirk 1987) and an 
average cupula radius of 0.11 cm results in an average bending stiffness D equal to 
approximately 1 x dyn cm. We stress that this is an average across the area of 
the cupula. 
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